Intelligence artificielle, données, calcul : quelles infrastructures pour un monde décarboné ?

Ce rapport intermédiaire du Shift Project examine les implications environnementales des technologies d’intelligence artificielle. L’étude analyse la consommation d’énergie, les émissions de carbone et les ressources nécessaires à l’entraînement et au déploiement des modèles d’IA. Le rapport formule des recommandations pour développer et utiliser l’IA en accord avec les objectifs de durabilité écologique et les principes de sobriété numérique.

Intelligence artificielle, données, calculs : quelles infrastructures dans un monde décarboné ?

Ce rapport étudie une composante clé des infrastructures du numérique, la filière centre de données, et la manière dont elle se construit en interaction avec l’intelligence artificielle, principal déterminant de ses dynamiques aujourd’hui. Celle-ci trace le contour de la manière dont le déploiement généralisé de l’IA infléchit ces dynamiques déjà insoutenables. Il éclaire les pistes à suivre pour réorienter vers la soutenabilité énergie-carbone nos choix technologiques, qui sont de véritables choix politiques, économiques et stratégiques.

Interpretable AI Systems: From Theory to Practice

This paper presents a comprehensive framework for developing interpretable AI systems that can explain their decisions to stakeholders. The research bridges the gap between theoretical approaches to AI interpretability and practical implementation challenges. The authors analyze various techniques for making AI systems more transparent and understandable, including feature attribution methods, counterfactual explanations, and human-centered design approaches. The study also addresses the crucial balance between model complexity and interpretability, offering guidelines for when and how to prioritize explainability in AI systems.

On the Biology of a Large Language Model

Large language models display impressive capabilities. However, for the most part, the mechanisms by which they do so are unknown. The black-box nature of models is increasingly unsatisfactory as they advance in intelligence and are deployed in a growing number of applications. Our goal is to reverse engineer how these models work on the inside, so we may better understand them and assess their fitness for purpose. The challenges we face in understanding language models resemble those faced by biologists. Living organisms are complex systems which have been sculpted by billions of years of evolution. While the basic principles of evolution are straightforward, the biological mechanisms it produces are spectacularly intricate. Likewise, while language models are generated by simple, human-designed training algorithms, the mechanisms born of these algorithms appear to be quite complex.

Sustainable AI Systems: Environmental Implications, Challenges and Opportunities

This paper provides a comprehensive analysis of the environmental impact of AI systems throughout their lifecycle, from development to deployment and maintenance. The authors examine various strategies for reducing the carbon footprint of AI, including efficient model architectures, green computing practices, and renewable energy usage. The research also presents concrete recommendations for developing and deploying AI systems in an environmentally responsible manner.

Sustainable NLP: An Analysis of Efficient Language Processing Methods

This research investigates methods for developing environmentally sustainable natural language processing systems, focusing on reducing computational costs and energy consumption. The study analyzes various efficiency techniques specific to NLP tasks, including model compression, efficient attention mechanisms, and task-specific optimizations. The authors provide empirical evidence of energy savings and performance trade-offs across different NLP tasks and model architectures.