Sustainable NLP: An Analysis of Efficient Language Processing Methods

This research investigates methods for developing environmentally sustainable natural language processing systems, focusing on reducing computational costs and energy consumption. The study analyzes various efficiency techniques specific to NLP tasks, including model compression, efficient attention mechanisms, and task-specific optimizations. The authors provide empirical evidence of energy savings and performance trade-offs across different NLP tasks and model architectures.

Sustainable Computing Practices: A Guide for AI Researchers and Practitioners

This practical guide provides concrete recommendations for implementing sustainable computing practices in AI research and development. The research outlines specific strategies for reducing energy consumption and carbon emissions throughout the AI development lifecycle, from experiment design to deployment. The authors present case studies and empirical evidence demonstrating the effectiveness of various sustainability practices in real-world AI projects.

Measuring the Carbon Intensity of AI in Cloud Instances

This paper presents a methodology for accurately measuring the carbon emissions of AI workloads running in cloud environments. The research provides detailed measurements across different cloud providers and regions, showing how carbon intensity can vary significantly based on location and time of day. The authors also release tools and best practices for researchers and practitioners to measure and reduce the carbon footprint of their AI applications.

Green AI

This influential paper introduces the concept of Green AI, which encourages AI research that yields better results while consuming less computing power and thus lower environmental impact. The authors contrast Green AI with what they call Red AI: research that seeks to improve accuracy through massive computational power, regardless of the environmental cost. The paper proposes new evaluation criteria for AI research that include computational efficiency alongside accuracy, encouraging more sustainable approaches to AI development.