Sustainable AI Systems: Environmental Implications, Challenges and Opportunities

This paper provides a comprehensive analysis of the environmental impact of AI systems throughout their lifecycle, from development to deployment and maintenance. The authors examine various strategies for reducing the carbon footprint of AI, including efficient model architectures, green computing practices, and renewable energy usage. The research also presents concrete recommendations for developing and deploying AI systems in an environmentally responsible manner.

Sustainable Computing Practices: A Guide for AI Researchers and Practitioners

This practical guide provides concrete recommendations for implementing sustainable computing practices in AI research and development. The research outlines specific strategies for reducing energy consumption and carbon emissions throughout the AI development lifecycle, from experiment design to deployment. The authors present case studies and empirical evidence demonstrating the effectiveness of various sustainability practices in real-world AI projects.