Efficient Training of Large Language Models: A Survey

This comprehensive survey examines various approaches to make the training of large language models more efficient and environmentally sustainable. The research analyzes different techniques including model compression, efficient attention mechanisms, and hardware-aware training strategies that can significantly reduce the computational and energy costs. The authors provide a systematic comparison of different efficiency methods and their impact on model performance, training time, and energy consumption.

Efficient Large Language Model Deployment: A Survey and Empirical Study

This comprehensive survey investigates various approaches for deploying large language models efficiently, focusing on reducing computational resources and energy consumption. The research evaluates different deployment strategies including model compression, quantization, and hardware acceleration techniques, providing empirical evidence of their effectiveness. The authors present a systematic comparison of deployment methods and their impact on model performance, latency, and energy usage.

Green Training of Large Language Models: Challenges and Techniques

This research investigates techniques for making the training of large language models more environmentally sustainable without compromising model performance. The authors propose novel methods for reducing energy consumption during training, including adaptive batch sizing, efficient model architectures, and intelligent resource allocation. The study provides extensive empirical analysis of different training strategies and their impact on both model quality and environmental footprint.

Efficient Vision Transformers: Methods and Applications

This comprehensive study explores methods for developing energy-efficient vision transformers while maintaining high performance in computer vision tasks. The research evaluates various optimization techniques including architecture modifications, training strategies, and inference optimizations specifically designed for vision transformers. The authors demonstrate significant reductions in computational costs and energy consumption while preserving model accuracy across different vision tasks.