Carbon Emissions and Large Neural Network Training

This comprehensive study analyzes the real carbon footprint of training large neural network models, taking into account multiple often-overlooked factors. The research provides a detailed methodology for calculating CO2 emissions and demonstrates how the choice of data center location and timing can significantly impact the environmental cost of AI training. The authors show that thoughtful choices about where and when to train models can reduce CO2 emissions by up to 100x compared to random choices.

Energy and Policy Considerations for Deep Learning in NLP

This pioneering study examines the carbon footprint of training natural language processing models. The authors quantify the financial and environmental costs of training various NLP models. The study reveals that training a single BERT model can emit as much CO2 as a trans-Atlantic flight, and that the computational costs of NLP models double every 3-4 months. The authors provide concrete recommendations to reduce environmental impact, particularly by prioritizing energy efficiency in model design and using renewable energy sources for training.

Green AI

This influential paper introduces the concept of Green AI, which encourages AI research that yields better results while consuming less computing power and thus lower environmental impact. The authors contrast Green AI with what they call Red AI: research that seeks to improve accuracy through massive computational power, regardless of the environmental cost. The paper proposes new evaluation criteria for AI research that include computational efficiency alongside accuracy, encouraging more sustainable approaches to AI development.

Intelligence artificielle, données, calcul : quelles infrastructures pour un monde décarboné ?

Ce rapport intermédiaire du Shift Project examine les implications environnementales des technologies d’intelligence artificielle. L’étude analyse la consommation d’énergie, les émissions de carbone et les ressources nécessaires à l’entraînement et au déploiement des modèles d’IA. Le rapport formule des recommandations pour développer et utiliser l’IA en accord avec les objectifs de durabilité écologique et les principes de sobriété numérique.

Measuring the Carbon Intensity of AI in Cloud Instances

This paper presents a methodology for accurately measuring the carbon emissions of AI workloads running in cloud environments. The research provides detailed measurements across different cloud providers and regions, showing how carbon intensity can vary significantly based on location and time of day. The authors also release tools and best practices for researchers and practitioners to measure and reduce the carbon footprint of their AI applications.

Sustainable AI: Environmental Implications, Challenges and Opportunities

This comprehensive survey examines the environmental impact of artificial intelligence throughout its lifecycle, from development to deployment and maintenance. The paper provides a systematic analysis of the challenges in making AI more sustainable, including hardware efficiency, algorithm design, and operational practices. The authors identify key opportunities for reducing AI’s environmental footprint and propose a research agenda for sustainable AI development.