Addition is All You Need for Energy-efficient Language Models

This innovative research demonstrates how simple addition operations can be used to create more energy-efficient language models without sacrificing performance. The authors propose a novel architecture that significantly reduces computational complexity and energy consumption while maintaining model capabilities. The study provides empirical evidence showing substantial energy savings compared to traditional transformer architectures.

Efficient Large Language Model Deployment: A Survey and Empirical Study

This comprehensive survey investigates various approaches for deploying large language models efficiently, focusing on reducing computational resources and energy consumption. The research evaluates different deployment strategies including model compression, quantization, and hardware acceleration techniques, providing empirical evidence of their effectiveness. The authors present a systematic comparison of deployment methods and their impact on model performance, latency, and energy usage.

Efficient Training of Large Language Models: A Survey

This comprehensive survey examines various approaches to make the training of large language models more efficient and environmentally sustainable. The research analyzes different techniques including model compression, efficient attention mechanisms, and hardware-aware training strategies that can significantly reduce the computational and energy costs. The authors provide a systematic comparison of different efficiency methods and their impact on model performance, training time, and energy consumption.

Efficient Transformers: A Survey of Modeling and Training Approaches

This comprehensive survey examines various approaches to making transformer models more computationally efficient and environmentally sustainable. The research analyzes different architectural innovations and training strategies that reduce the computational and energy requirements of transformer models while maintaining their effectiveness. The authors provide a systematic comparison of different efficiency techniques and their impact on model performance, training costs, and environmental footprint.

Efficient Vision Transformers: Methods and Applications

This comprehensive study explores methods for developing energy-efficient vision transformers while maintaining high performance in computer vision tasks. The research evaluates various optimization techniques including architecture modifications, training strategies, and inference optimizations specifically designed for vision transformers. The authors demonstrate significant reductions in computational costs and energy consumption while preserving model accuracy across different vision tasks.

Energy-Efficient Deep Learning: A Comprehensive Review

This comprehensive review examines state-of-the-art approaches for making deep learning more energy-efficient across the entire stack, from hardware to algorithms. The research analyzes various efficiency techniques including model compression, neural architecture search, and hardware-software co-design for energy-efficient deep learning. The authors provide detailed case studies and empirical evaluations of different approaches, offering insights into their effectiveness for reducing energy consumption while maintaining model performance.

Environmental Impact of AI Data Centers: Challenges and Solutions

This comprehensive study analyzes the environmental impact of data centers specifically used for AI training and inference. The research provides detailed measurements of energy consumption and carbon emissions from major AI computing facilities. The authors present innovative solutions for reducing the environmental footprint of AI infrastructure, including advanced cooling systems, renewable energy integration, and workload optimization strategies. The paper also introduces new metrics for measuring and comparing the environmental efficiency of different AI computing architectures and deployment strategies.

Green Software Engineering: Principles and Practices for Sustainable AI Development

This research presents a comprehensive framework for developing environmentally sustainable software, with a particular focus on AI systems and applications. The study identifies key principles and practices for green software engineering, including energy-aware design patterns, efficient coding practices, and sustainability metrics. The authors provide concrete guidelines and case studies demonstrating how to implement sustainable software development practices throughout the entire software lifecycle.

Green Training of Large Language Models: Challenges and Techniques

This research investigates techniques for making the training of large language models more environmentally sustainable without compromising model performance. The authors propose novel methods for reducing energy consumption during training, including adaptive batch sizing, efficient model architectures, and intelligent resource allocation. The study provides extensive empirical analysis of different training strategies and their impact on both model quality and environmental footprint.

Sustainable AI Systems: Environmental Implications, Challenges and Opportunities

This paper provides a comprehensive analysis of the environmental impact of AI systems throughout their lifecycle, from development to deployment and maintenance. The authors examine various strategies for reducing the carbon footprint of AI, including efficient model architectures, green computing practices, and renewable energy usage. The research also presents concrete recommendations for developing and deploying AI systems in an environmentally responsible manner.