Sustainable AI Systems: Environmental Implications, Challenges and Opportunities

This paper provides a comprehensive analysis of the environmental impact of AI systems throughout their lifecycle, from development to deployment and maintenance. The authors examine various strategies for reducing the carbon footprint of AI, including efficient model architectures, green computing practices, and renewable energy usage. The research also presents concrete recommendations for developing and deploying AI systems in an environmentally responsible manner.

Sustainable AI: Environmental Implications, Challenges and Opportunities

This comprehensive survey examines the environmental impact of artificial intelligence throughout its lifecycle, from development to deployment and maintenance. The paper provides a systematic analysis of the challenges in making AI more sustainable, including hardware efficiency, algorithm design, and operational practices. The authors identify key opportunities for reducing AI’s environmental footprint and propose a research agenda for sustainable AI development.